459 research outputs found

    Exploring the roles of multidimensional versus unidimensional construct of destination social responsibility in explaining destination trust and relationship continuity

    Get PDF
    Funding: This study was supported by 2021 Research Grant from Kangwon National University.Peer reviewedPublisher PD

    Finite Element Simulation of Powder Compaction via Shock Consolidation Using Gas-gun System

    Get PDF
    AbstractShock consolidation is a promising method for consolidation of nanocrystalline metallic powders since it can prevent grain growth of nanopowders during the process due to very short processing time. However, internal cracks often occurs in powder compacts during the shock consolidation process. In this paper, finite element simulations showed that reflected tensile wave causes spall phenomena resulting internal crack of powder compaction during shock compaction process. To reduce spall phenomena, FEM simulation with changing compaction die's geometry was performed to find out relationship between shape and tensile wave intensity. Based on FEM results, new compaction die was designed and bulk nanocrystalline Cu are obtained using new compaction die

    Investigation of thermal resistance and power consumption in Ga-doped indium oxide (In2O3) nanowire phase change random access memory

    Get PDF
    The resistance stability and thermal resistance of phase change memory devices using similar to 40 nm diameter Ga-doped In2O3 nanowires (Ga:In2O3 NW) with different Ga-doping concentrations have been investigated. The estimated resistance stability (R(t)/R-0 ratio) improves with higher Ga concentration and is dependent on annealing temperature. The extracted thermal resistance (R-th) increases with higher Ga-concentration and thus the power consumption can be reduced by similar to 90% for the 11.5% Ga: In2O3 NW, compared to the 2.1% Ga: In2O3 NW. The excellent characteristics of Ga-doped In2O3 nanowire devices offer an avenue to develop low power and reliable phase change random access memory applications. (C) 2014 AIP Publishing LLC.X113sciescopu

    Estimating remineralized phosphate and its remineralization rate in the northern East China Sea during Summer 1997 : a snapshot study before Three-Gorges Dam construction

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Terrestrial, Atmospheric and Oceanic Sciences 27 (2016): 955-963, doi:10.3319/TAO.2016.01.24.01(Oc).The northern East China Sea (a.k.a., “The South Sea”) is a dynamic zone that exerts a variety of effects on the marine ecosystem due to Three-Gorges Dam construction. As the northern East China Sea region is vulnerable to climate forcing and anthropogenic impacts, it is important to investigate how the remineralization rate in the northern East China Sea has changed in response to such external forcing. We used an historical hydrographic dataset from August 1997 to obtain a baseline for future comparison. We estimate the amount of remineralized phosphate by decomposing the physical mixing and biogeochemical process effect using water column measurements (temperature, salinity, and phosphate). The estimated remineralized phosphate column inventory ranged from 0.8 to 42.4 mmol P m-2 (mean value of 15.2 ± 12.0 mmol P m-2). Our results suggest that the Tsushima Warm Current was a strong contributor to primary production during the summer of 1997 in the study area. The estimated summer (June - August) remineralization rate in the region before Three-Gorges Dam construction was 18 ± 14 mmol C m-2 d-1.T. Lee was supported by 2-Year Research Grant of Pusan National University. H.-C. Kim was partly supported by KOPRI project (PG15010). I.-N. Kim was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A1A01052051). K.-T. Park was partly supported by KOPRI project (PE17010). J.-H. Kim was partly supported by the program of “Management of Marine Organisms Causing Ecological Disturbance and Harmful Effects” funded by KIMST/MOF. A.M. Macdonald’s contribution was supported by NOAA grant: #NA110AR4310063 and NSF grant: #OCE-1059881

    Development of an Evaluation Methodology for Loss of Large Area induced from Extreme Events with malicious origin

    Get PDF
    Event of loss of large area (LOLA) induced from extreme external event at multi-units nuclear installation has been emerged a new challenges in the realm of nuclear safety and regulation after Fukushima Dai-Ichi accident. The relevant information and experience on evaluation methodology and regulatory requirements are rarely available and negative to share due to the security sensitivity. Most of countries has been prepared their own regulatory requirements and methodologies to evaluate impact of LOLA at nuclear power plant. In Korea, newly amended the Nuclear Safety Acts requires to assess LOLA in terms of EDMG (Extended Damage Mitigation Guideline). Korea Institute of Nuclear Safety (KINS) has performed a pilot research project to develop the methodology and regulatory review guidance on LOLA at multi-units nuclear power plant since 2014. Through this research, we proposed a methodology to identify the strategies for preventive and mitigation of the consequences of LOLA utilizing PSA techniques or its results. The proposed methodology is comprised of 8 steps including policy consideration, threat evaluation, identification of damage path sets, SSCs capacity evaluation and identification of mitigation measures and strategies. The consequence of LOLA due to malevolent aircraft crash may significantly susceptible with analysis assumptions including type of aircraft, amount of residual fuel, and hittable angle and so on, which cannot be shared overtly. This paper introduces a evaluation methodology for LOLA using PSA technique and its results. Also we provide a case study to evaluate hittable access angle using flight simulator for two types of aircrafts and to identify potential path sets leading to core damage by affected SSCs within damaged area

    Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities

    Get PDF
    Objectives Cohort studies of associations between air pollution and health have used exposure prediction approaches to estimate individual-level concentrations. A common prediction method used in Korean cohort studies is ordinary kriging. In this study, performance of ordinary kriging models for long-term particulate matter less than or equal to 10 μm in diameter (PM10) concentrations in seven major Korean cities was investigated with a focus on spatial prediction ability. Methods We obtained hourly PM10 data for 2010 at 226 urban-ambient monitoring sites in South Korea and computed annual average PM10 concentrations at each site. Given the annual averages, we developed ordinary kriging prediction models for each of the seven major cities and for the entire country by using an exponential covariance reference model and a maximum likelihood estimation method. For model evaluation, cross-validation was performed and mean square error and R-squared (R2) statistics were computed. Results Mean annual average PM10 concentrations in the seven major cities ranged between 45.5 and 66.0 μg/m3 (standard deviation=2.40 and 9.51 μg/m3, respectively). Cross-validated R2 values in Seoul and Busan were 0.31 and 0.23, respectively, whereas the other five cities had R2 values of zero. The national model produced a higher crossvalidated R2 (0.36) than those for the city-specific models. Conclusions In general, the ordinary kriging models performed poorly for the seven major cities and the entire country of South Korea, but the model performance was better in the national model. To improve model performance, future studies should examine different prediction approaches that incorporate PM10 source characteristics

    Tolerability and Outcomes of First-Line Pemetrexed-Cisplatin Followed by Gefitinib Maintenance Therapy Versus Gefitinib Monotherapy in Korean Patients with Advanced Nonsquamous Non-small Cell Lung Cancer: A Post Hoc Descriptive Subgroup Analysis of a Randomized, Phase 3 Trial

    Get PDF
    Purpose We recently reported on a randomized, open-label, phase 3 trial comparing pemetrexedcisplatin chemotherapy followed by gefitinib maintenance therapy (PC/G) with gefitinib monotherapy in patients with non-small cell lung cancer (NSCLC). Here, we report on a post hoc subgroup analysis of that study assessing the demographics and disposition of the Korean patient subgroup, and comparing the tolerability of PC/G and gefitinib monotherapy and the tumor response with respect to epidermal growth factor receptor (EGFR) status. Materials and Methods Patients, who were 18 years, chemonalve, Korean, light ex-smokers/never-smokers with advanced NSCLC, were randomly assigned (1:1) to PC/G or gefitinib monotherapy. Treatment-emergent adverse events (TEAEs) were graded, and tumor response was measured as change in lesion sum from baseline at best response. The study was registered with ClinicalTrials.gov, NCT01017874. Results Overall, 111 Korean patients were treated (PC/G, 51; gefitinib, 60). Between-arm characteristics were balanced and similar to those of the overall population. Treatment discontinuations due to adverse events were low (PC/G: 1, 2.0%; gefitinib: 7, 11.7%). Overall, 92 patients (82.9%) reported >= 1 TEAE (PC/G, 44; gefitinib, 48); few patients (PC/G, 16; gefitinib, 7) reported severe TEAEs; the most frequent was neutropenia (PC/G arm) and elevated alanine aminotransferase (gefitinib arm). The lesion sum was decreased by PC/G treatment in most patients, regardless of EGFR mutation status, while gefitinib monotherapy reduced the lesion sum in EGFR-positive patients but had no effect in EGFR-negative patients. Conclusion Our results confirm that both PC/G and gefitinib were well tolerated in Korean patients, regardless of EGFR status; however, patients with EGFR wild-type NSCLC may not benefit from gefitinib monotherapy.

    A fatal case report of invasive pulmonary aspergillosis and mucormycosis coinfection in an immunocompetent patient with coronavirus disease 2019 in Korea

    Get PDF
    Systemic glucocorticoid treatment is highly recommended in critically ill coronavirus disease 2019 (COVID-19) patients. However, secondary fungal infections are of concern in such patients. Here, we describe the first case of COVID-19-associated invasive pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) coinfection in a COVID-19 positive immunocompetent patient in Korea. A 69-year-old man was admitted to our hospital with COVID-19 pneumonia. He had no underlying comorbidities and was not taking medications. He received remdesivir, dexamethasone, and antibiotic therapy under mechanical ventilation. Although his condition improved temporarily, multiple cavities were observed on chest computed tomography, and Aspergillus fumigatus was cultured from tracheal aspiration culture. He was diagnosed with probable CAPA and received voriconazole therapy. However, his condition was not significantly improved despite having received voriconazole therapy for 4 weeks. After release from COVID-19 quarantine, he underwent bronchoscopy examination and was then finally diagnosed with CAPA and CAM coinfection on bronchoscopic biopsy. Antifungal treatment was changed to liposomal amphotericin B. However, his progress deteriorated, and he died 4 months after admission. This case highlights that clinical suspicion and active checkups are required to diagnose secondary fungal infections in immunocompetent COVID-19 patients who receive concurrent glucocorticoid therapy
    corecore